22 research outputs found

    Population Genomics Related to Adaptation in Elite Oat Germplasm

    Get PDF
    Six hundred thirty five oat ( L.) lines and 4561 single-nucleotide polymorphism (SNP) loci were used to evaluate population structure, linkage disequilibrium (LD), and genotype–phenotype association with heading date. The first five principal components (PCs) accounted for 25.3% of genetic variation. Neither the eigenvalues of the first 25 PCs nor the cross-validation errors from = 1 to 20 model-based analyses suggested a structured population. However, the PC and = 2 model-based analyses supported clustering of lines on spring oat vs. southern United States origin, accounting for 16% of genetic variation ( < 0.0001). Single-locus -statistic () in the highest 1% of the distribution suggested linkage groups that may be differentiated between the two population subgroups. Population structure and kinship-corrected LD of = 0.10 was observed at an average pairwise distance of 0.44 cM (0.71 and 2.64 cM within spring and southern oat, respectively). On most linkage groups LD decay was slower within southern lines than within the spring lines. A notable exception was found on linkage group Mrg28, where LD decay was substantially slower in the spring subpopulation. It is speculated that this may be caused by a heterogeneous translocation event on this chromosome. Association with heading date was most consistent across location-years on linkage groups Mrg02, Mrg12, Mrg13, and Mrg24

    A Consensus Map in Cultivated Hexaploid Oat Reveals Conserved Grass Synteny with Substantial Subgenome Rearrangement

    Get PDF
    Hexaploid oat ( L., 2 = 6 = 42) is a member of the Poaceae family and has a large genome (∼12.5 Gb) containing 21 chromosome pairs from three ancestral genomes. Physical rearrangements among parental genomes have hindered the development of linkage maps in this species. The objective of this work was to develop a single high-density consensus linkage map that is representative of the majority of commonly grown oat varieties. Data from a cDNA-derived single-nucleotide polymorphism (SNP) array and genotyping-by-sequencing (GBS) were collected from the progeny of 12 biparental recombinant inbred line populations derived from 19 parents representing oat germplasm cultivated primarily in North America. Linkage groups from all mapping populations were compared to identify 21 clusters of conserved collinearity. Linkage groups within each cluster were then merged into 21 consensus chromosomes, generating a framework consensus map of 7202 markers spanning 2843 cM. An additional 9678 markers were placed on this map with a lower degree of certainty. Assignment to physical chromosomes with high confidence was made for nine chromosomes. Comparison of homeologous regions among oat chromosomes and matches to orthologous regions of rice ( L.) reveal that the hexaploid oat genome has been highly rearranged relative to its ancestral diploid genomes as a result of frequent translocations among chromosomes. Heterogeneous chromosome rearrangements among populations were also evident, probably accounting for the failure of some linkage groups to match the consensus. This work contributes to a further understanding of the organization and evolution of hexaploid grass genomes

    SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species

    Get PDF
    A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources

    Mapping Oat Crown Rust Resistance Gene Pc45 Confirms Association with PcKM

    No full text
    Molecular mapping of crown rust resistance genes is important to effectively utilize these genes and improve breeding efficiency through marker-assisted selection. Pc45 is a major race-specific crown rust resistance gene initially identified in the wild hexaploid oat Avena sterilis in the early 1970s. This gene was transferred to cultivated oat (Avena sativa) and has been used as a differential for identification of crown rust races since 1974. Previous research identified an association between virulence to Pc45 and PcKM, a crown rust resistance gene in the varieties ‘Kame’ and ‘Morton’. This study was undertaken to reveal the relationship between Pc45 and PcKM. Pc45 was studied in the crosses ‘AC Morgan’/Pc45 and ‘Kasztan’/Pc45, where Pc45 is the differential line carrying Pc45. F2 progenies and F2:3 families of both populations were inoculated with the crown rust isolate CR258 (race NTGG) and single gene segregation ratios were observed. SNP markers for PcKM were tested on these populations and linkage maps were generated. In addition, 17 newly developed SNP markers identified from genotyping-by-sequencing (GBS) data were mapped in these two populations, plus another three populations segregating for Pc45 or PcKM. Pc45 and PcKM mapped to the same location of Mrg08 (chromosome 12D) of the oat chromosome-anchored consensus map. These results strongly suggest that Pc45 and PcKM are the same resistance gene, but allelism (i.e., functionally different alleles of the same gene) or tight linkage (i.e., two tightly linked genes) cannot be ruled out based on the present data

    Genome-Wide Association Mapping of Crown Rust Resistance in Oat Elite Germplasm

    No full text
    Oat crown rust, caused by f. sp. , is a major constraint to oat ( L.) production in many parts of the world. In this first comprehensive multienvironment genome-wide association map of oat crown rust, we used 2972 single-nucleotide polymorphisms (SNPs) genotyped on 631 oat lines for association mapping of quantitative trait loci (QTL). Seedling reaction to crown rust in these lines was assessed as infection type (IT) with each of 10 crown rust isolates. Adult plant reaction was assessed in the field in a total of 10 location–years as percentage severity (SV) and as infection reaction (IR) in a 0-to-1 scale. Overall, 29 SNPs on 12 linkage groups were predictive of crown rust reaction in at least one experiment at a genome-wide level of statistical significance. The QTL identified here include those in regions previously shown to be linked with seedling resistance genes , , , , , and and also with adult-plant resistance and adaptation-related QTL. In addition, QTL on linkage groups Mrg03, Mrg08, and Mrg23 were identified in regions not previously associated with crown rust resistance. Evaluation of marker genotypes in a set of crown rust differential lines supported as the identity of . The SNPs with rare alleles associated with lower disease scores may be suitable for use in marker-assisted selection of oat lines for crown rust resistance

    Achievements and impact of the Collaborative Oat Research Enterprise (CORE)

    No full text
    The Collaborative Oat Research Enterprise (CORE) was initiated in 2009 and ran until approximately 2014. It consisted of a set of coordinated projects, funded investigators, and collaborators who were united by an over-arching goal of developing modern tools for genomics and molecular breeding in oat. Principle outcomes of the CORE included: (1) sets of experimental germplasm, (2) a comprehensive cDNA library and sequence resource, (3) a SNP genotyping array, (4) genotyping-by-sequencing methods, (5) genotype/phenotype data housed in a relational database, (6) a complete consensus linkage map, and (7) a foundational study on population structure, linkage disequilibrium, and adaptation in cultivated oat. Here, we present the results of an impact assessment, which includes a survey sent to 130 scientists in the oat community. Of the 56 survey respondents, 15 were principle CORE investigators, 21 were nonfunded collaborators, and 20 were not involved with CORE. A majority (37) of respondents considered that CORE results were essential and/or had been used substantially in oat research, while 29 respondents considered that the results were essential and/or would be used substantially in oat breeding. Respondents also evaluated the impact of each individual CORE outcome on their own research. Most responses ranged between ?indirect benefit? to ?essential?, with the consensus map showing the highest proportion of ?essential? ratings. Nevertheless, there were between two and ten respondents per question who gave responses of ?I don?t know? or ?no benefit?. An examination of text-based responses to ?lessons learned? and ?recommendations? suggested that there were a small number of researchers who felt excluded from the CORE project, or who considered that communication could have been improved. These and other lessons may provide guidance to future large multi-institutional research enterprises. We also assessed the impact of CORE through 33 key citations, and through a tabulation of 30 new research projects dependent on CORE results. From this, we conclude that CORE has had a major impact in enabling and encouraging ongoing research, and in building a strong and vibrant oat research community
    corecore